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Abstract
We study the behaviour of the normal derivative of eigenfunctions of
the Helmholtz equation inside billiards with Dirichlet boundary condition.
These boundary functions are of particular importance because they uniquely
determine the eigenfunctions inside the billiard and also other physical
quantities of interest. Therefore, they form a reduced representation of the
quantum system, analogous to the Poincaré section of the classical system.
For the normal derivatives we introduce an equivalent to the standard Green
function and derive an integral equation on the boundary. Based on this integral
equation we compute the first two terms of the mean asymptotic behaviour of
the boundary functions for large energies. The first term is universal and
independent of the shape of the billiard. The second one is proportional
to the curvature of the boundary. The asymptotic behaviour is compared
with numerical results for the stadium billiard, different limaçon billiards and
the circle billiard, and good agreement is found. Furthermore, we derive an
asymptotic completeness relation for the boundary functions.

PACS numbers: 03.65.Sq, 05.45.Mt

1. Introduction

The study of eigenfunctions of quantum systems, in particular with chaotic classical dynamics,
has attracted a lot of attention. A prominent class of examples is provided by billiard systems,
which classically are given by the free motion of a particle inside some domain with elastic
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10294 A Bäcker et al

reflections at the boundary. The corresponding quantum system is described by the Helmholtz
equation inside a compact domain � ⊂ R2 (in units h̄ = 1 = 2m),

�ψn(x) + k2
nψn(x) = 0 x ∈ � (1)

with (for example) Dirichlet boundary conditions

ψn(x) = 0 x ∈ ∂� (2)

where the normalized eigenfunctions ψn(x) are in L2(�). A detailed knowledge about the
behaviour of eigenvalues and the structure of eigenstates is relevant for applications, for
example in microwave cavities or mesoscopic systems (see, e.g., [1], and references therein).

A particular nice feature of the classical dynamics in Euclidean billiards is the existence of
a global Poincaré section based on the boundary ∂�. This Poincaré section facilitates the study
of the classical dynamics considerably, because the dynamics is reduced to an area-preserving
map on the two-dimensional compact surface of section. It appears therefore desirable to look
for a similar reduced representation of the quantum-mechanical problem. One representation
is provided by the boundary integral method. The boundary integral method transforms
the two-dimensional Helmholtz equation (1) for the eigenfunctions with Dirichlet boundary
condition to a one-dimensional integral equation on the boundary ∂�. This method involves
the normal derivative of the eigenfunctions, hereafter called the boundary functions,

un(s) := ∂

∂nx
ψn(x)|x=x(s) ≡ 〈n(s),∇ψn(x(s))〉 (3)

where x(s) is a point on the boundary ∂�, parametrized by the arclength s, and n(s) denotes
the outer normal unit vector to ∂� at x(s). The integral equation for the boundary function is
of the form

u = −H1(k)u (4)

where H1(k) is an integral operator depending on the parameter k (for the explicit form of its
integral kernel, see equation (25) below). This equation has solutions only for a discrete set
of values of the parameter k which, when real valued, give the eigenvalues of the Helmholtz
equation. The associated solution u is the normal derivative of the corresponding eigenfunction
which can be obtained from u via an integral formula using the free Green function on the
plane.

This reduction to the boundary is very useful for the numerical computation of eigenvalues
and eigenfunctions. The boundary function allows for a direct expression of the corresponding
eigenfunction, its normalization [2], momentum distribution [3], autocorrelation function
[4] and other quantities of interest. Furthermore, the boundary functions are the basis to
define a Husimi representation of the eigenstates over the classical Poincaré section (see, e.g.,
[5, 6]) and therefore provide a direct connection with the classical Poincaré map. This is in
particular useful in situations where one is interested in fine structures of the eigenstates and
their relation to the classical dynamics, as in the field of quantum chaos. From this it is clear
that the boundary functions deserve a study in their own right. A profound knowledge of their
properties can then be used to obtain a description for the above-mentioned quantities.

There are two main aspects concerning the boundary functions. First, one can consider
these functions as a possible set of basis vectors that span a kind of natural space for the
reduced quantum system. Here the question of orthogonality and completeness of the boundary
functions arises. Second, as the boundary functions contain all information on the quantum
system inside the given domain, it is very interesting to see how the properties of the eigenstates
of the Helmholtz equation (1) are reflected in the boundary functions. The last point is our
main interest in this paper where we study the mean semiclassical behaviour of the sequence
of boundary functions in terms of a spectral average.
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A classical example of a spectral quantity is the spectral staircase function (integrated
level density)

N(k) := #{n ∈ N |kn � k} (5)

whose asymptotic behaviour for k → ∞ is given by the Weyl formula (see [7])

N(k) = A
4π

k2 − L
4π

k + o(k). (6)

HereA denotes the area of the billiard and L the length of the boundary ∂�. It is a well-known
observation that the first two terms of (6) usually describe the mean behaviour of N(k) very
well, even down to the ground state (see, for example, figure 2 in [8]).

In the same way one can consider the sum over a sequence of the normalized
eigenfunctions ψn up to some given energy k2,

�(k,x) :=
∑
kn�k

|ψn(x)|2 . (7)

For billiards with C∞-boundary ([9], theorem 17.5.10) implies

�(k,x) = 1

4π
k2 − 1

4π

J1(2d(x)k)

d(x)
k + R(k,x) (8)

where d(x) is the distance of the point x ∈ � to the boundary ∂�, and J1(z) denotes the
Bessel function. The remainder R(k,x) satisfies the estimate |R(k,x)| � Ck for large k.
The second term in (8) describes the influence of the boundary. This result is, as the Weyl
formula for the mean behaviour of the spectral staircase function, completely independent
of the classical chaoticity of the underlying system. So it applies equally well to integrable,
mixed and chaotic systems. To illustrate the behaviour of �(k,x), let us consider a member
of the family of limaçon billiards introduced by Robnik [10, 11], whose boundary is given in
polar coordinates by ρ(ϕ) = 1 + ε cos ϕ where ε ∈ [0, 1] is the family parameter. In figure 1
we show a three-dimensional plot of �(k,x)/k2 for the desymmetrized limaçon billiard with
parameter ε = 0.3 using the first 100 eigenfunctions of odd symmetry (i.e. with Dirichlet
boundary conditions on the symmetry axis). For this parameter value the classical billiard has
a mixed phase space (see figure 1 in [12]). The agreement of the asymptotic behaviour given
by (8) with �(k,x) is very good (see [13] for further examples).

In analogy, a similar behaviour for the sum over the sequence of boundary functions un(s)

is expected in the limit k → ∞, i.e.∑
kn�k

|un(s)|2
k2

n

∼ 1

4π
k2 + · · · . (9)

In [14], it has been conjectured that the asymptotic behaviour of a similar sum,
∑

kn�k |un(s)|2,
is D1k

4 + D2κ(s)k3, where κ(s) is the curvature of the boundary at the point s ∈ ∂�. In
this work, we derive for the sum (9) the asymptotic behaviour c1k

2 + c2κ(s)k including the
constants. The first constant turns out to be c1 = 1

4π
which is consistent with the leading term

of the Weyl formula (6). Multiplying (9) by 1
2 〈n(s),x(s)〉 and integrating over the billiard

boundary gives N(k) for the left-hand side, because of the following normalization relation
for un(s) [2] (for alternative derivations and more general boundary conditions, see [15, 16])

1

2

∫
∂�

〈n(s),x(s)〉|un(s)|2 ds = k2
n. (10)

For the right-hand side one uses

1

2

∫
∂�

〈n(s),x(s)〉 ds = A (11)
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Figure 1. Three-dimensional plot of �(k,x)/k2 for the desymmetrized limaçon billiard for
ε = 0.3 and k chosen such that N(k) = 100. To the right a section of �(k,x)/k2 at x1 = 0.5 for
the case N(k) = 1000 is shown and compared with the asymptotic result (8) (dashed curve). The
horizontal dotted line shows the leading term 1/(4π). The inset shows a magnification.

to obtain the leading term of the Weyl formula (6). The next to leading term can be determined
by using ∫

∂�

κ(s)〈n(s),x(s)〉 ds = L (12)

which for billiards with C∞-boundary follows from d
ds

t(s) = −κ(s)n(s) and partial
integration (here t(s) is the unit tangent vector at s ∈ ∂�).

In the following, we derive the full asymptotic series for the sum in equation (9) and
compute the first two terms explicitly. To this end, in section 2 an integral equation on the
boundary is derived which is then used in section 3 to obtain the mean behaviour of the
boundary functions. Some of the more technical details are given in the appendices. In
section 4, we provide a numerical test of the asymptotic behaviour at finite energies. We
conclude with a short summary.

2. An integral equation on the boundary

Our main tool for the analysis of the semiclassical behaviour of the boundary functions is a
boundary Green function which we define as∑

n∈N

1

k2 − k2
n

un(s)u
∗
n(s

′). (13)

This is the analogue of the standard Green function inside the billiard, where we have replaced
the eigenfunctions by their normal derivatives on the boundary. Our aim in this section is to
derive an integral equation for (13), which can be solved recursively, and therefore leads to an
expansion of (13) in terms of known functions. The method is very similar to the one used
by Balian and Bloch [17], and our expansion on the boundary is the exact analogue of their
multiple reflection expansion.

The energy-dependent Green function for the Dirichlet Laplacian on � is given by

G(E,x,y) =
∑
n∈N

ψn(x)ψ∗
n (y)

E − k2
n

(14)
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for (x,y) ∈ � × �, where k2
n and ψn are the eigenvalues and normalized eigenfunctions of

�, respectively, and E is a complex parameter. This Green function is the unique solution of
the equation

(�x + E)G(E,x,y) = δ(x − y) (15)

in � which satisfies Dirichlet boundary conditions. To obtain a similar relation on the boundary
we define

g(k, s, s′) := ∂

∂nx

∂

∂ny
G(k2,x,y)|x=x(s),y=y(s ′)

=
∑
n∈N

1

k2 − k2
n

un(s)u
∗
n(s

′) (16)

where k = √
E ∈ C, Im k > 0, is the branch of the square root of E which has positive

imaginary part.
We will now derive an integral equation for g(k, s, s′). Let

G0(E,x,y) := 1

(2π)2

∫
R2

1

E − |ξ|2 ei〈ξ,x−y〉 d2ξ (17)

be a free Green function which satisfies (�x+E)G0(E,x,y) = δ(x−y) on R2. This function
depends holomorphically on E in the cut plane C\R+. Additionally, we introduce the auxiliary
functions f (x, s′) := ∂

∂ny
G(E,x,y)|y=y(s ′) and f0(x, s′) := ∂

∂ny
G0(E,x,y)|y=y(s ′). Then

(�x + E)(f (x, s′) − f0(x, s′)) = 0 (18)

for x ∈ �\∂� and therefore we can represent this difference as a single-layer potential

f (x, s ′) − f0(x, s ′) = SLµ(x, s′) :=
∫

∂�

G0(E,x,y(s))µ(s, s′) ds. (19)

The density µ(s, s′) is determined by the boundary condition

−f0(x(s′′), s ′) =
∫

∂�

G0(E,x(s′′),y(s))µ(s, s ′) ds (20)

and it is a standard result from potential theory that this equation is solvable [19]. We can
determine µ(s, s′) from the jump relations for a single-layer potential [19]

∂±
nx

SLµ(x(s), s ′) =
∫

∂�

∂nx
G0(E,x(s),y(s ′′))µ(s′′, s′) ds′′ ± 1

2
µ(s, s ′) (21)

where ∂±
nx

denotes interior (+) or exterior (−) limits of the normal derivative, i.e., for a
function φ(x) they are defined as ∂±

nx
φ(x(s)) := limε→0〈n(s),∇xφ(x(s) ∓ εn(s))〉 where

n(s) denotes the outer normal unit vector to the boundary at x(s). From equation (19) and
the jump relations (21) we then obtain

g(k, s, s′) = ∂+
nx

f (x(s), s′) − ∂−
nx

f (x(s), s′) = µ(s, s′). (22)

Applying now ∂+
nx

to equation (19) and using (21) and (22) leads to the desired integral equation
on the boundary

g(k, s, s′) = g0(k, s, s′) −
∫

∂�

h1(k, s, s′′)g(k, s′′, s ′) ds′′ (23)

where g(k, s, s′) is given by (16) and

g0(k, s, s ′) = 2∂nx
∂ny

G0(k
2,x(s),y(s′)) (24)

h1(k, s, s ′) = 2∂nx
G0(k

2,x(s),y(s′)). (25)
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Equation (23) is a Fredholm integral equation of second kind and can be solved by iteration.
If we write G,G0,H1 for the operators with integral kernels g, g0 and h1, respectively, the
integral equation becomes

G = G0 − H1G

which can be solved for G as

G = (1 + H1)
−1G0 =

∑
n∈N0

(−1)nHn
1 G0 (26)

and the series converges if H1 is small enough. Going back to the kernels of the operators
this gives the expansion

g(k, s, s′) = g0(k, s, s′) +
∞∑

n=1

(−1)n
∫

∂�

hn(k, s, s ′′)g0(k, s ′′, s ′) ds′′ (27)

where for n � 2 we have

hn(k, s, s ′′) =
∫

∂�

∫
∂�

· · ·
∫

∂�

h1(k, s, s1)h1(k, s1, s2) · · ·h1(k, sn−1, s
′′) ds1 ds2 · · · dsn−1.

(28)

Let us now discuss the convergence of the series (26). From the integral representation
(64) for h1(k, s, s ′) (derived in appendix A) we see that for s �= s′ a positive imaginary part
Im k gives an exponential damping factor, therefore we expect that there exists a γ > 0 such
that for Im k � γ the operator norm of H1 satisfies

‖H1‖ < 1. (29)

Then, for Im k � γ , the series (26) would converge to a bounded operator. On the other hand,
the boundary integral method tells us that the operator H1 has an eigenvalue −1 if k2 is an
eigenvalue of the Helmholtz equation (1). At these values the series (26) clearly diverges, as
it should, since g has a pole there.

It is often useful to consider spectral functions different from g(k, s, s′), and one way of
introducing them such that the series (27) can still be applied is based on the formula

lim
γ→0+

− 1

π
Im

2(x + iγ )

(x + iγ )2 − k2
= δ(x − k) + δ(x + k). (30)

Let ρ(k) and a(k) be functions which are holomorphic in the strip −ε < Im k < γ + ε for
some ε > 0, real valued for real arguments and a(k) even. Furthermore, assume that their
product a(k)ρ(k) decays faster than 1/k2 for Re k → ±∞. Then we define

gρ(k, s, s′) := − 1

π
Im

∫ ∞+iγ

−∞+iγ
2zρ(k − z)a(z)g(z, s, s′) dz. (31)

Under the assumption (29) for Im k � γ we can insert expansion (27) and obtain a series
which converges to the kernel of a bounded operator. On the other hand, since gρ(k, s, s ′) is
holomorphic in {k ∈ C | Im k > 0}, integral (31) does not depend on γ . By taking the limit
γ → 0+ and using (30) and the definition (16) we get the representation

gρ(k, s, s′) =
∑
n∈N

[ρ(k − kn) + ρ(k + kn)]a(kn)un(s)u
∗
n(s

′). (32)

So the role of the function ρ is to select a spectral window in the summation, whereas a(k)

acts as a weight function.
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Now ρ(k) and a(k) can be adapted to the particular question one is interested in. In the
next section, we want to study the mean behaviour of the boundary functions, and therefore
will choose

ρ(k) = 1

2π

∫
R

ρ̂(t) eitk dt (33)

where ρ̂ is even and has compact support in a sufficiently small neighbourhood of 0. This
choice obviously fulfils the requirements needed. For the weight function a(k) we will choose

a(k) = 1

k2 + α2
(34)

with α > γ . This also fulfils the requirements and satisfies a(k) = 1/k2 + O(1/k4) for
k → ∞, which gives the correct normalization factor for the un in view of (10).

3. Mean behaviour of boundary functions

In this section, we want to study the mean behaviour of the boundary functions un for large
energies k2

n. We will do this by choosing a suitable test function ρ in (31), namely we will
assume that there is an ε > 0 such that

supp ρ̂ ⊂ [−ε, ε] and ρ̂(t) = 1 for t ∈ [−ε/2, ε/2] (35)

and furthermore that ε is smaller than the shortest periodic orbit of the classical billiard flow.
From (27), (28) and (31) we obtain the expansion

gρ(k, s, s′) =
∑
n∈N0

gρ
n (k, s, s′) (36)

with

gρ
n (k, s, s ′) := (−1)n+1

π
Im

∫ ∞+iγ

−∞+iγ
2zρ(k − z)a(z)

∫
∂�

hn(z, s, s
′′)g0(z, s

′′, s ′) ds′′ dz (37)

for n � 1, and for n = 0

g
ρ

0 (k, s, s′) := − 1

π
Im

∫ ∞+iγ

−∞+iγ
2zρ(k − z)a(z)g0(z, s, s

′) dz. (38)

If ρ is furthermore positive, the sum (32) can be interpreted as defining a mean value of
boundary functions weighted with the factor a(kn), where the mean is taken over a spectral
window around k defined by ρ. In the following, we will assume that the billiard boundary
is smooth, or can be obtained as the desymmetrization of a smooth billiard. We will show in
appendix C that under the conditions (35) and with a(k) ∼ 1/k2 for k → ∞

gρ
n (k, s, s) = O(k1−n) (39)

and therefore the sum (36) provides an asymptotic expansion for large k of the mean boundary
functions.

The explicit computation of the first terms in the expansion (36) is given in appendix B.
Here we choose a to be of the form (34). For s = s′ the first term is given by

g
ρ

0 (k, s, s) = k

2π
+ O(k−∞) (40)

and for s ∼ s′ one has

g
ρ

0 (k, s, s′) = k

2π

[
2

k|s − s′|J1(k|s − s′|) + O(s − s′)
]

+ O(k−∞). (41)
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The second term is for s ∼ s′ given by

g
ρ

1 (k, s, s′) = −κ(s)

2π
cos(2k|s − s′|) + O(1/k) (42)

where κ(s) denotes the curvature of the boundary at s.
Integrating gρ(k, s, s′) one obtains

(
N ∗ ρ

)
(k, s, s ′) =

∫ k

0
gρ(k′, s, s ′) dk′ (43)

where ∗ denotes convolution and N(k, s, s′) is defined as

N(k, s, s′) :=
∑
kn�k

un(s)u
∗
n(s

′)
k2

n

. (44)

It is well known from the theory of spectral asymptotics that

N(k, s, s′) = (N ∗ ρ)(k, s, s′)(1 + O(1/k)) (45)

see [18], and therefore from an asymptotic expansion of (43) we immediately obtain the
leading semiclassical behaviour of (44).

Inserting (36) and using (40), (42) and (39) the asymptotic behaviour of (43) becomes

(N ∗ ρ)(k, s, s) = 1

4π
k2 − κ(s)

2π
k + O(ln k) (46)

which is the main result of this section.
Thus the leading term of (45) reads

N(k, s, s) = 1

4π
k2 + O(k). (47)

Assuming in addition that the set of p ∈ [−1, 1], such that (p, s) belongs to a periodic orbit
of the billiard map, has measure zero, we expect that the two-term asymptotics (46) holds for
N(k, s, s) as well, but with an error term o(k). However, to prove this requires to adapt the
more sophisticated methods from [18] or [7], where similar statements are proved for N(k).
Note that, as discussed in the introduction, the relation between N(k) and N(k, s, s) is given
by

N(k) = 1

2

∫
∂�

〈n(s),x(s)〉N(k, s, s) ds (48)

and therefore we recover (6) from (46) using (10)–(12), up to the error term.
Often one studies billiards � with discrete symmetries and restricts the study to the

corresponding symmetry subclasses of the eigenfunctions. For example, for a system which
is symmetric with respect to reflection at the x1-axis the eigenfunctions can be classified as
either odd, fulfilling ψ(x1, x2) = −ψ(x1,−x2), or even, where ψ(x1, x2) = ψ(x1,−x2).
Consequently, eigenfunctions with odd symmetry satisfy Dirichlet boundary conditions on the
symmetry axis and even eigenfunctions obey Neumann boundary conditions on the symmetry
axis. Of course, such symmetries of � induce symmetries of ∂�. We restrict ourselves to the
case of a reflection symmetry at a point s0 ∈ ∂�. In this case the boundary Green function
(13) has to be modified to

g±(k, s, s′) = g(k, s0 + s, s0 + s′) ± g(k, s0 + s, s0 − s ′) (49)

for s, s′ near s0 with even (+) or odd (−) symmetry. Using this and (41) we obtain for s close
to s0

g
ρ

0
±
(k, s, s) = k

2π

[
1 ± 1

k|s − s0|J1(2k|s − s0|)
]

(1 + O(1/k)) (50)
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and

g
ρ

1
±
(k, s, s) = −κ(s)

2π
[1 ± cos(2k|s − s0|)](1 + O(1/k)). (51)

Therefore, we get

(N± ∗ ρ)(k, s, s)= k2

4π

[
1 ± 1 − J0(2k|s − s0|)

|s − s0|2k2

]
− k

κ(s)

2π

[
1 ± sin(2k|s − s0|)

2k|s − s0|
]

+ O(ln k)

(52)

for s close to a fixed point s0 of the symmetry.
Our results show that the mean behaviour of the normalized boundary functions is very

similar to the mean behaviour of eigenfunctions. The crucial difference between the two
sequences of functions {ψn}n∈N, {un}n∈N is that the eigenfunctions live on a two-dimensional
space whereas the boundary functions live on a one-dimensional space. Since both un and ψn

oscillate roughly with the same de Broglie wavelength 2π/kn, this leads to an overcompleteness
of the set {un}n∈N. This statement can be made more explicit by observing that (41) implies

gρ(k, s, s′) = 2

π
δ(s − s′) + O(1/k). (53)

More precisely, this means that for every ϕ ∈ C∞(∂�)

ϕ(s) =
∑
n∈N

ρ(k − kn)ϕnun(s) + O(1/k) (54)

holds with coefficients

ϕn := π

2k2
n

∫
∂�

u∗
n(s

′)ϕ(s′) ds′. (55)

This follows from (72) by the method of stationary phase (see appendix D). Since ρ is a rapidly
decreasing function, this means that the boundary functions with spectral parameter kn in an
interval of fixed width around k form a complete set in the limit k → ∞. The number of these
states grows like k, in contrast to the number of all states up to energy k2, which, according
to the Weyl formula, grows like k2. Therefore this result gives a quantitative measure of the
overcompleteness of the set {un}n∈N.

4. Numerical results for integrable, mixed and chaotic systems

In this section we would like to test how well the asymptotic expansion (46) describes the mean
behaviour of the boundary function at finite energies. To illustrate the energy dependence we
plot in figure 2 N(k, s, s) for s = 3.2 for the desymmetrized limaçon billiard with ε = 0.3 (see
the introduction). The dashed line beneath the staircase function (full curve) is the asymptotic
result (46). As for the spectral staircase function excellent agreement, even down to the ground
state, is observed. Note that for such a good agreement it is crucial to include the curvature
term. This is illustrated by the dotted line in figure 2 which is a plot of the leading term
k2/(4π).

Now we turn to the s-dependence of N(k, s, s), where for better comparison we have
divided by k2

σ(k, s) := 1

k2

∑
kn�k

|un(s)|2
k2

n

≡ 1

k2
N(k, s, s). (56)

First, we consider the stadium billiard which is given by two semi-circles joined by two parallel
straight lines. The stadium billiard is proved to be strongly chaotic, i.e. it is ergodic, mixing
and a K-system [20, 21]. The height of the desymmetrized billiard is chosen to be 1, and a
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Figure 2. Plot of N(k, s, s) at s = 3.2 for the desymmetrized limaçon billiard with ε = 0.3. The
dashed curve is the asymptotic result (46) and the dotted curve is just the leading term (47).
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Figure 3. Plot of the spectral average σ(k, s) for the fully desymmetrized stadium billiard with
a = 1.8 and Dirichlet boundary conditions everywhere. The energy k2 is chosen such that the first
1000 boundary functions are taken into account. The horizontal dotted line is the leading term,
1/(4π), and the dashed line corresponds to the asymptotic formula σ−(k, s), equation (57). The
inset shows a magnification.

denotes the length of the upper horizontal line, for which we have a = 1.8 in the following.
The boundary is parametrized starting with s = 0 at the corner of the quarter circle, ranging to
s = π/2 at the place where straight line and quarter circle join tangentially until s = π/2 + a

at the next corner. Figure 3 shows σ(k, s) using the first 1000 boundary functions. The
asymptotic result (see section 3) reads (for even and odd symmetry)

σ±(k, s) := 1

4π

[
1 ±

∑
corners i

1 − J0(2k|s − si |)
|s − si |2k2

]
− κ(s)

2πk

[
1 ±

∑
corners i

sin(2k|s − si|)
2k|s − si |

]
(57)

where the contributions near the corners are taken into account.
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Figure 4. Same as in the previous figure but for the desymmetrized limaçon billiard with ε = 0.3.
For this parameter the classical phase space is mixed.

At s = π/2 the mean behaviour shows a jump caused by the discontinuity in the curvature
of the boundary (transition from the circular part to the straight line). Although our derivation
is not valid at this point we observe an excellent agreement of σ(k, s) with σ−(k, s). Moreover,
the behaviour near the two corners is clearly visible and very well described by σ−(k, s).

The next example, shown in figure 4 for the limaçon billiard with ε = 0.3, illustrates that
the mean behaviour is independent of the classical dynamical properties as for this parameter
the considered billiard is a mixed system (i.e. regular and irregular regions in phase space
coexist). The asymptotic formula also works well in cases where the curvature changes more
strongly as for example for the limaçon billiard with ε = 0.7 (see figure 5). In this case the
classical dynamics appears to be ergodic (though it is not the case since there exist some very
small islands of stability [22]).

Finally, we would like to consider the circle billiard as an example of an integrable system.
The boundary functions of a circle billiard with radius R and the corresponding eigenvalues
are given by

ulm(s) = − jlm√
πR2

eil s
R and k2

lm =
(

jlm

R

)2

(58)

respectively, where jlm denotes the mth positive zero of the Jl-Bessel function. Therefore,∑
klm�k

|ulm(s)|2
k2

lm

= 1

A
N(k). (59)

Turning to the desymmetrized circle billiard no such simple expression exists. Figure 6
shows a plot of σ(k, s) for the desymmetrized circle billiard with Neumann boundary condition
on the symmetry axis. Again, we find very good agreement with the corresponding asymptotic
result σ +(k, s).

5. Summary

We have studied the semiclassical behaviour of the normal derivative of eigenfunctions of
Euclidean billiards. These boundary functions form a reduced representation of the quantum
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Figure 5. Same as in the previous figure but for the desymmetrized limaçon billiard with ε = 0.7.
Here the influence of the curvature contribution is clearly visible.
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Figure 6. Plot of σ(k, s) for the desymmetrized circle billiard with radius one and Neumann
boundary condition compared with the corresponding asymptotic result σ +(k, s) shown as dashed
line.

system, analogous to the Poincaré section of the classical billiard. Thus, they are of special
interest in order to understand the properties of the eigenfunctions of billiards and their relation
to the classical system, as investigated in the field of quantum chaos.

We have introduced an analogue of the standard energy Green function for the boundary
functions, and one of our main results is the derivation of an integral equation for this boundary
Green function. The resulting integral equation is the principal tool for the semiclassical
analysis and leads to an expansion of the boundary Green function which is the analogue of
the classical multiple reflection expansion. The resulting expansion could now be used to
derive a semiclassical representation of the boundary Green function in terms of orbits of the
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classical billiard map, but here we were only interested in the so-called length-zero contribution
which determines the mean behaviour of the normal derivatives for large energies.

For the mean behaviour of the sequence of the boundary functions we have derived a
two-term asymptotics for large energies, where the first term is universal, i.e. completely
independent of the given billiard, and the second term is proportional to the curvature of the
boundary. These theoretical results fit very well with the numerical computations for different
Euclidean billiards.

Furthermore, we have obtained a completeness relation for the boundary functions with
momenta kn near k for large k, which shows that the whole set of normal derivatives is highly
over-complete, since a fraction of order k is asymptotically sufficient to span the reduced state
space over the boundary.
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Appendix A. Integral representations

For the computation of the two leading terms in the expansion (36), equations (40) and (42),
we need suitable integral representations of h1(k, s, s ′) and g0(k, s, s ′). We start by deriving
a representation of h1(k, s, s ′). Namely, from (17) and (25) we get

h1(k, s, s ′) = 2i

(2π)2

∫
R2

〈n(s), ξ〉
E − |ξ|2 ei〈ξ,x(s)−y(s ′)〉 d2ξ (60)

where E = k2. Inserting the relation

1

E − |ξ|2 = −iε
∫ ∞

0
eiε(E−|ξ|2)t dt (61)

with ε = sgn Im E and for |Im E| > 0, allows us to solve the ξ -integral and we arrive at

h1(k, s, s ′) = − iε

π

∫ ∞

0

〈n(s), δx(s, s′)〉
4t2

eiε[ |δx(s,s′ )|2
4t

+k2t] dt (62)

where we have used the abbreviation δx(s, s′) = x(s) − y(s ′). This expression has the
disadvantage that the factor 〈n(s), δx(s, s′)〉 tends to zero for s → s′, so we use

− 1

|δx(s, s′)|2
d

dt
eiε |δx(s,s′ )|2

4t = iε

4t2
eiε |δx(s,s′ )|2

4t (63)

and partial integration (the boundary term at t = 0 vanishes in the weak sense as a function
of s) to obtain

h1(k, s, s ′) = − iεk2

π

〈n(s), δx(s, s′)〉
|δx(s, s′)|2

∫ ∞

0
eiε[ |δx(s,s′ )|2

4t
+k2t] dt . (64)

Note that for s ∼ s′

〈n(s), δx(s, s′)〉
|δx(s, s′)|2 = 1

2
κ(s) + O(s − s ′) (65)

where κ(s) denotes the curvature of the boundary ∂� at x(s) (with the sign convention that it
is positive for a circle).
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A similar representation can be derived for g0(k, s, s′). Inserting now (61) in (24) allows
us again to compute the ξ -integral and we obtain

g0(k, s, s ′) = − 1

2π

∫ ∞

0

[ 〈n(s), δx(s, s′)〉〈n(s′), δx(s, s′)〉
4r3

− iε
〈n(s),n(s′)〉

2r2

]
eiε[ 1

4r
(δx(s,s ′))2+k2r] dr. (66)

The integral is again well defined as an oscillatory integral, but it will be useful below to
have a suitable regularization at hand when we want to change the order of integration. To
this end, let G0,ζ (k

2,x,y) be the integral kernel of the complex power of the free resolvent,
(−� + k2)−ζ , ζ ∈ C, and let g0,ζ (k, s, s′) := 2∂nx

∂ny
G0,ζ (k

2,x(s),y(s′)). Then a calculation

analogous to the one leading to (66), using (E − |ξ|2)−ζ = e−i π
2 ζ

εζ

�(ζ )

∫ ∞
0 rζ−1 eiε(E−|ξ|2)r dr

instead of (61), shows that

g0,ζ (k, s, s ′) = −εζ+1 e−i π
2 (ζ−1)

2π�(ζ )

∫ ∞

0

[ 〈n(s), δx(s, s′)〉〈n(s′), δx(s, s′)〉
4r3

− iε
〈n(s),n(s′)〉

2r2

]
rζ−1 eiε[ 1

4r
(δx(s,s ′))2+k2r] dr (67)

and we have of course g0,1(k, s, s ′) = g0(k, s, s′).

Appendix B. The computation of gρ
0 and gρ

1

In this appendix, we will use the integral representations derived in appendix A to compute
the first and second terms in the asymptotic expansion (36).

We start with the first term, (38). Since the integrand is holomorphic in the upper
half-plane, we can take the limit γ → 0, and using (24) we obtain

g
ρ

0 (k, s, s ′) = 2

(2π)2

∫
R2

[ρ(k − |ξ|) + ρ(k + |ξ|)]a(|ξ|)〈n(s), ξ〉〈n(s′), ξ〉 ei〈δx(s,s ′),ξ〉 d2ξ.

(68)

Since ρ is rapidly decreasing, and |ξ| is positive, the term ρ(k + |ξ|) is smaller than any
negative power of k for large k and can therefore be neglected. Using representation (33) and
introducing polar coordinates in the ξ -integral leads to

g
ρ

0 (k, s, s ′) = 2k4

(2π)3

∫ 2π

0

∫ ∞

0

∫ ∞

−∞
ρ̂(t)a(kr)〈n(s), ê(ϕ)〉〈n(s′), ê(ϕ)〉

× eik[t (1−r)+r〈δx(s,s′),ê(ϕ)〉]r3 dt dr dϕ + O(k−∞) (69)

where ê(ϕ) denotes the unit vector in direction ϕ. The r, t-integrals can now be evaluated and
give

k

2π

∫ ∞

−∞

∫ ∞

0
ρ̂(t) eik[t (1−r)+r〈δx(s,s′),ê(ϕ)〉]a(rk)r3 dt dr

= k

2π

∫ ∞

−∞

∫ ∞

−1
ρ̂(t + 〈δx(s, s′), ê(ϕ)〉)e−iktra((r + 1)k)(r + 1)dr dt eik〈δx(s,s ′),ê(ϕ)〉

= e
i
k
∂t ∂r ρ̂(t + 〈δx(s, s′), ê(ϕ)〉)a((r + 1)k)(1 + r)|r=t=0 eik〈δx(s,s ′),ê(ϕ)〉 + O(k−∞)

= a(k) eik〈δx(s,s ′),ê(ϕ)〉 + O(k−∞) (70)
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for |〈δx(s, s′), ê(ϕ)〉| < ε/2 by (35). In the step from the second to the third line we have
used the general relation

k

2π

∫ ∞

−∞

∫ ∞

−∞
e−ikrt f (r, t) dr dt = e− i

k
∂r∂t f (r, t)|r=0,t=0. (71)

The error O(k−∞) is due to the cut-off of the r-integral at r = −1. This finally leads to

g
ρ

0 (k, s, s ′) = a(k)k3

2π2

∫ 2π

0
〈n(s), ê(ϕ)〉〈n(s′), ê(ϕ)〉 eik〈δx(s,s ′),ê(ϕ)〉 dϕ + O(k−∞) (72)

for s close to s′. At s = s ′ we get

g
ρ

0 (k, s, s) = a(k)k3

2π
+ O(k−∞) (73)

and for s ∼ s′ a Taylor expansion of the exponent gives

g
ρ

0 (k, s, s′) ≈ a(k)k3

2π2

∫ 2π

0
cos2φ eik|s−s ′| sin φ dφ

= a(k)k3

2π

2

k|s − s′|J1(k|s − s′|). (74)

For the determination of the second term, g
ρ

1 (k, s, s ′), it is useful to use the regularized
expression (67) with ζ in a range where all integrals converge, and finally make an analytic
continuation to ζ = 1. So we use representations (64) and (67) and insert them in (37). The
k-dependence in the expressions for g0,ζ and h1 is simple and we can perform the resulting
z-integral

1

π

∫ ∞+iγ

−∞+iγ
2zρ(k − z)a(z)h1(z, s, s

′′)g0,ζ (z, s
′′, s ′) dz. (75)

Since the integrand is holomorphic in the upper half-plane, we can perform the limit γ → 0.
If we furthermore change variables r → r/k and t → t/k in (66) and (64), and interchange
the order of integration, the z-integral boils down to

1

π

∫ ∞

−∞
2z3ρ(k − z)a(z) ei t+r

k
z2

dz = 1

π
eik(t+r)

∫ ∞

−∞
2(k − z)3a(k − z)ρ(z) ei t+r

k
z2

e−i2(t+r)z dz

= 2k3a(k)

π
ρ̂(2(t + r)) eik(t+r)(1 + O(1/k)). (76)

Here we need that a satisfies a kind of symbol estimate. Collecting the remaining integrals
leads to

g
ρ

1,ζ (k, s, s ′) = Im

[
k4−ζ a(k)

π3

∫ ∞

0

∫ ∞

0

∫
∂�

b(k, s, s′, s′′, r, ζ )ρ̂(2(t + r))(1 + O(1/k))

× eik[ 1
4r

(δx(s ′′,s ′))2+ 1
4t

(δx(s,s ′′))2+(r+t)] ds′′ dr dt

]
(77)

with

b(k, s, s′, s ′′, r, ζ ) = e−i π
2 (ζ−1) 〈n(s), δx(s, s′′)〉

|δx(s, s′′)|2

×
[

ik
〈n(s′′), δx(s′′, s ′)〉〈n(s′), δx(s′′, s ′)〉

4r3
+

〈n(s′′),n(s ′)〉
2r2

]
rζ−1. (78)
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This looks quite complicated and to understand the properties of this expression better let
us discuss the stationary points of the phase function 1

4r
(δx(s′′, s ′))2 + 1

4t
(δx(s, s′′))2 + (r + t)

with respect to s′′, t, r . The derivatives with respect to t and r give the conditions

− 1

4t2
(δx(s, s′′))2 + 1 = 0 − 1

4r2
(δx(s′′, s ′))2 + 1 = 0 (79)

respectively, and hence 2t = |δx(s, s′′)| and 2r = |δx(s′′, s ′)|. The s′′-derivative leads to

1

2r
〈t(s′′), δx(s′′, s ′)〉 − 1

2t
〈t(s′′), δx(s, s′′)〉 = 0 (80)

which yields together with the previous conditions on t and r for s′′

〈t(s′′), ̂δx(s′′, s ′)〉 = 〈t(s′′), ̂δx(s, s′′)〉. (81)

But this is just the condition that there exists a trajectory in the billiard � starting at the
point s at the boundary, which is then elastically reflected at s′′ and ending in s′. This is,
of course, what one expects by analogy with similar expressions, namely that gρ(k, s, s ′) is
semiclassically given by a sum over all classical orbits from s to s′, each contributing an
amplitude depending on the stability of the orbit and an oscillating factor with frequency
proportional to the length of the orbit. The nth term in the expansion of gρ(k, s, s ′) contains
exactly the orbits with n reflections on the boundary. For the determination of the contribution
of these orbits in leading order one can simplify the formulae for g0 and h1 considerably by
using their asymptotic expansions for large arguments which can easily be derived by the
method of stationary phase from the integral representations in appendix A. But if s is close to
s′, there is one very short orbit with s′′ between s and s′ whose length tends to zero for s → s ′.
The contribution of this orbit determines the mean behaviour of gρ(k, s, s) and therefore it is
commonly called the length-zero contribution. For the computation of this contribution the
above-mentioned asymptotic formulae for g0 and h1 cannot be used because they are not valid
in these regions, hence we must work with the full representation as in (77).

The s′′-integral can be solved by the method of stationary phase, and since ρ̂ is supported
in a small neighbourhood of 0 there is only one stationary point for s close to s′, and we find
that g

ρ

1,ζ (k, s, s ′) is for s ∼ s′ equal to the imaginary part of

a(k)κ(s)k7/2−ζ e−iπ( ζ

2 − 3
4 )

2π5/2�(ζ )

∫ ∞

0

∫ ∞

0

1

r5/2−ζ

(
t

t + r

)1/2

× eik[ (s−s′ )2
4(t+r)

+(t+r)]ρ̂(2(t + r)) dr dt (1 + O(1/k)). (82)

Introducing now the coordinates v = t + r and w = t − r gives∫ ∞

0

∫ ∞

0

1

r5/2−ζ

(
t

t + r

)1/2

eik[ (s−s′ )2
4(t+r)

+(t+r)]ρ̂(2(t + r)) dr dt

= 21−ζ

∫ ∞

0
v−1/2

∫ v

−v

(v + w)1/2

(v − w)5/2−ζ
dw eik[ (s−s′ )2

4v
+v]ρ̂(2v) dv

= B

(
3

2
,−3

2
+ ζ

) ∫ ∞

0
v−3/2+ζ eik[ (s−s′ )2

4v
+v]ρ̂(2v) dv

= B

(
3

2
,−3

2
+ ζ

)
iπρ̂(0)

( |s − s ′|
2

)− 1
2 +ζ

× e−iπ(
ζ

2 − 1
4 )H

(1)
1
2 −ζ

(k|s − s′|)[1 + O(1/k)] (83)
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where B(u, v) denotes the beta function and H(1)
ν (x) the Hankel function of the first kind.

After collecting all terms we can perform the analytic continuation to ζ = 1 and finally obtain

g1(k, s, s ′) = −ρ̂(0)a(k)k2 κ(s)

2π
cos(k|s − s′|)[1 + O(1/k)] (84)

for s ∼ s′.

Appendix C. Estimating gρ
n

In this appendix we derive the estimate (39) on g
ρ
n (k, s, s). For g

ρ
n (k, s, s) one obtains a

similar expression as (77),

gρ
n (k, s, s) = Im

[
kn+1

∫ ∞

0

∫
Rn

+

∫
∂�n

b(s, s′, r)a(k)ρ̂

(
2r + 2

n∑
i=1

ti

)

× eik[ 1
4r

(δx(s ′′,s ′))2+r+
∑n+1

i=1
1

4ti
(δx(si−1′,s ′

i ))
2+

∑n
i=1 ti ] dns′ dnt dr

]
(85)

with

b(s, s′, r) =
n+1∏
i=1

〈n(s′
i−1), δx(s′

i−1, s
′
i )〉

|δx(s′
i−1, s

′
i )|2

[
k
〈n(s′

n), δx(s′
n, s)〉〈n(s), δx(s′

n, s)〉
4r3

− i
〈n(s′

n),n(s)〉
2r2

]
(86)

where s′ = (s′
1, . . . , s

′
n), t = (t1, . . . , tn) and we use the convention s′

0 = sn+1 = s. As in the
discussion after (77) one sees that the main contributions to (85) come from orbit segments,
starting in s and returning to s after n reflections at the boundary. The total length of these
orbits is 2r + 2

∑
i ti and since this expression appears as the argument of ρ̂, the only orbit

contributing to the integral (85) is the one with s′
1 = s′

2 = · · · = s′
n = s and ti = r = 0, thanks

to the small support of ρ̂. So we can approximate (δx(s′
i−1, s

′
i ))

2 ≈ (s′
i−1 − s′

i )
2 for all i in

the exponent of the integrand of (85), and in the prefactor b we can set s′
i = s for all i. Now a

substitution s′ → s′/k, t → t/k and r → r/k makes the integrand independent of k up to a
factor of k−2n, which together with the former prefactor kn+1 gives an overall factor k−n+1. A
more careful analysis shows that the resulting integrals diverge at r = 0, so we should use the
regularization which we already applied to the computation of g1(k, s, s ′). But this does not
change the final result

gn(k, s, s) = O(k1−n). (87)

Appendix D. The completeness relation

In this appendix we derive the completeness relation (54). By the results of appendix C we
get∫

∂�

ϕ(s′)gρ(k, s, s′) ds′ =
∫

∂�

ϕ(s′)gρ

0 (k, s, s ′) ds′ +
∫

∂�

ϕ(s′)gρ

1 (k, s, s ′) ds′ + O(1/k)

(88)

if ϕ ∈ C∞(∂�) and ρ satisfies conditions (35). The first term on the right-hand side can easily
be computed by using (72), the method of stationary phase, and by observing that due to the
cut-off introduced by ρ̂ the only stationary points come from s′ = s. The result is∫

∂�

ϕ(s′)gρ

0 (k, s, s ′) ds′ = 2

π
ϕ(s) + O(1/k) (89)
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where we have assumed that a(z) = 1/z2 + O(1/z4), see (34). The computation of the second
term in (88) is similar but more complicated. Using now (77) and solving the resulting s′ and
s′′-integrals with the method of stationary phase leads to∫

∂�

ϕ(s′)gρ

1,ζ (k, s, s ′) ds′ = Im

[
Ck3−ζ κ(s)ϕ(s) e−i π

2 (ζ+1)

×
∫ ∞

0

∫ ∞

0

t1/2

r5/2−ζ
ρ̂(2(t + r)) eik(t+r) dr dt

]
(1 + O(1/k)) (90)

where we have collected all factors not depending on k and s in the real constant C. Introducing
new coordinates v = t + r,w = t − r allows us to solve the integrals, and after setting ζ = 1
we arrive at ∫

∂�

ϕ(s′)gρ

1 (k, s, s ′) ds′ = C ′′ κ(s)

k
ϕ(s) + O(1/k2) = O(1/k) (91)

for k → ∞, with another constant C′′. Therefore result (54) is established.
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